NAG Toolbox for MATLAB

f07hf

1 Purpose

f07hf computes a diagonal scaling matrix S intended to equilibrate a real n by n symmetric positive-definite band matrix A, with bandwidth $(2k_d + 1)$, and reduce its condition number.

2 Syntax

[s, scond, amax, info] =
$$f07hf(uplo, kd, ab, 'n', n)$$

3 Description

f07hf computes a diagonal scaling matrix S chosen so that

$$s_i = 1/\sqrt{a_{ii}}$$
.

This means that the matrix B given by

$$B = SAS$$
,

has diagonal elements equal to unity. This in turn means that the condition number of B, $\kappa_2(B)$, is within a factor n of the matrix of smallest possible condition number over all possible choices of diagonal scalings (see Corollary 7.6 of Higham 2002).

4 References

Higham N J 2002 Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Parameters

5.1 Compulsory Input Parameters

1: **uplo – string**

Indicates whether the upper or lower triangular part of A is stored in the array ab, as follows:

$$uplo = 'U'$$

The upper triangle of A is stored.

$$uplo = 'L'$$

The lower triangle of A is stored.

Constraint: uplo = 'U' or 'L'.

2: kd – int32 scalar

 k_d , the number of superdiagonals of the matrix A if **uplo** = 'U', or the number of subdiagonals if **uplo** = 'L'.

Constraint: $kd \ge 0$.

3: **ab(ldab,*)** - **double array**

The first dimension of the array **ab** must be at least $\mathbf{kd} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

[NP3663/21] f07hf.1

f07hf NAG Toolbox Manual

The upper or lower triangle of the symmetric positive-definite band matrix A whose scaling factors are to be computed.

The matrix is stored in rows 1 to $k_d + 1$, more precisely,

if **uplo** = 'U', the elements of the upper triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(k_d+1+i-j,j)$ for $\max(1j-k_d) \le i \le j$;

if **uplo** = 'L', the elements of the lower triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(1+i-j,j)$ for $j \le i \le \min(nj+k_d)$.

Only the elements of the array **ab** corresponding to the diagonal elements of A are referenced. (Row $(k_d + 1)$ of **ab** when **uplo** = 'U', row 1 of **ab** when **uplo** = 'L'.)

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array ab.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab

5.4 Output Parameters

1: s(*) – double array

Note: the dimension of the array **s** must be at least $max(1, \mathbf{n})$.

If info = 0 on exit, s contains the diagonal elements of the scaling matrix S.

2: scond - double scalar

If **info** = 0 on exit, **scond** contains the ratio of the smallest value of s(i) to the largest value of s(i). If **scond** ≥ 0.1 and **amax** is neither too large nor too small, it is not worth scaling by S.

3: amax – double scalar

 $\max |a_{ij}|$. If **amax** is very close to overflow or underflow, the matrix A should be scaled.

4: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

```
1: uplo, 2: n, 3: kd, 4: ab, 5: ldab, 6: s, 7: scond, 8: amax, 9: info.
```

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

If **info** = i, the *i*th diagonal element of A is not positive (and hence A cannot be positive-definite).

f07hf.2 [NP3663/21]

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Further Comments

The complex analogue of this function is f07ht.

9 Example

[NP3663/21] f07hf.3 (last)